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Abstract
The long-range spectral density correlations (spectral rigidities �̄3(n̄) and
related spectral compressibilities) of the E ⊗ (b1 + b2) Jahn–Teller model
are found strongly nonuniversal with respect to the Hamiltonian parameters
and inhomogeneous with respect to the choice of a partial energy segment.
However, the partial spectral rigidities exhibit common features: an anomalous
linear part for small n̄ and a saturation for large n̄. The spectral compressibilities
found for the partial spectral segments and averaged over a whole relevant
part of the spectrum cumulate close to a well-defined limit pertaining to
the semi-Poisson statistics. This is in accordance with similar tendencies
revealed in the short-range averaged statistical characteristics of this model
investigated in our previous paper (Majernı́ková and Shpyrko 2006 Phys. Rev.
E 73 057202). These features document an inhomogeneous and nonuniversal
weakening of level repulsions and nonuniversality of level fluctuations on both
long and short energy scales. The nonuniversality and inhomogeneity of the
statistical characteristics correspond to a similar behaviour of the chaoticity
parameter (a fraction of the chaotic phase space of the trajectories) found for
the corresponding semiclassical Hamiltonian. We ascribe the nonuniversal
and inhomogeneous nonintegrability behaviour to the changing degree of
the brokening of the rotation symmetry when changing parameters of our
effectively two-dimensional model. It results in a random distribution of the
respective localized wavefunctions at all scales up to the size of an available
state space. The multifractal behaviour of the wavefunctions is implied from
the analysis of their (averaged) fractal dimensions which range up to 1.5 ± 0.1
(for D̄2). This might imply the concept of the chaos-assisted tunnelling
between the regions of reduced degree of stochasticity through regions of
high degree of stochasticity. It supports the analogy with the two-dimensional
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Anderson model with marginal-asymptotically far metal–insulator transition.
The features found allow us to classify the present model as a member of the
class with a multifractal eigenfunction statistics characteristic for the spectra
with weakened level repulsion similar to the Anderson model close to the
metal–insulator transition.

PACS numbers: 05.45.−a, 31.30.−i, 63.22.+m

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Investigations of a wide class of complex Hamiltonians show a coexistence of ordered and
more disconnected chaotic dynamic regions in their phase space in a semiclassical limit [2].
Respective parameters, fractions of the regular and chaotic regions of the phase space were
used for the evaluation of statistical characteristics of the related quantum spectra. Namely,
explicit formulae for the nearest-neighbour level spacing distributions [3] and the averaged
level number variances or the �3 statistics [4, 5] were illustrated by a model of two coupled
quartic oscillators. The level repulsion at small level spacings was shown to be reduced
by the fractionating of the chaotic region which substantially complicated related numerical
calculations (level spacing distributions). Discrepancies between the numerical data and the
analytical formulae for the above-mentioned short-range and also the middle and long-range
fluctuation statistics were ascribed especially to quantum effects like the tunnelling between
regular regions through chaotic barriers and the quantum interference effects. Finally, the
chaos-assisted tunnelling approach to the calculation of the level repulsion implied the correct
behaviour of the level spacing distributions in the limit of small level separations [6]. This
kind of tunnelling was shown to be connected with the fractal dimension of a two-dimensional
phase space due to a hierarchical phase space structure of a chaotic system [7].

In this paper, we try to show that one of the systems which exhibit fluctuation properties
typical for a transition region between order and chaos with varying (nonuniversal) degree of
nonintegrability is the E ⊗ (b1 + b2) Jahn–Teller (JT) model. The model is represented by two
degenerate electron levels coupled to two phonon (vibron) modes via two different interaction
strengths. Unitary diagonalization of the Hamiltonian in the electron space transforms the
system onto two highly nonlinearly coupled quantum oscillators in two dimensions.

In a recent paper [1], we have initiated the study of the statistical evidence of quantum
chaotic patterns emerging in this model. We have shown that the (short-range) statistics of the
nearest-neighbour level spacings (NNS) in the range of interaction parameters apart from the
particular symmetry cases (E ⊗ e JT and exciton model) is nonuniversal and tends to a well-
defined limit close to the semi-Poisson law P(S) = 4S exp(−2S). This intermediate statistic
between the Poisson (uncorrelated levels) and the Wigner–Dyson distribution of a correlated
fully chaotic level system was found within the frame of random matrix theory as a critical
distribution in the metal–insulator transition region in the Anderson model of disorder [8, 9]
as well as in several models with not fully developed chaotic dynamics by Bogomolny [10].
Namely, the semi-Poisson distribution of the level spacings in the plasma model was ascribed
to the screening (restriction to a finite number of nearest neighbours) of the logarithmic pair
interaction potential. Statistical methods for energy levels and eigenfunctions of disordered
systems were reviewed by several authors [11].
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In section 2, we shall concentrate on the complementary item of the long-range statistics
for the excited spectra of the E ⊗ (b1 + b2) JT model with broken rotation symmetry. It
comprises the spectral rigidity measure of correlations of the level density on scales large
when compared to the mean level spacings. Among possible variants of this measure one can
cite the �̄3 statistics of Dyson and Mehta [8, 9, 12, 13]. Namely, the �3 value is defined as
a (random) quantity which for a given energy interval [−L,L] around the value E0 gives the
deviation of the least-square linear fit line from the staircase function N(E) of the number of
levels with energy below E:

�3(L) = minA,B

{
1

2L

∫ L

−L

[N(E) − AE − B]2 dE

}
(1)

(here the energy is shifted so that the interval is centred around 0; the minimalization is
performed with respect to parameters A,B). The average of this measure over ensemble �̄3

is the quantity of the present interest. The �̄3 measure and the correlation function of the level
number �2(n̄) ≡ 〈δ2N〉 = 〈N2〉 − 〈N〉2 (fluctuations of the level number in an energy band
of a width E, n̄ ≡ 〈N〉 is the length of the energy interval measured by the mean number of
the levels inside) are related straightforward as �̄3(n̄) = 2

n̄4

∫ n̄

0 (n̄3 − 2n̄2r + r3)�2(r) dr [14].
The use of the �̄3-statistics instead of the level number fluctuations �2 is justified by the fact
that its variance is suppressed when compared to that of 〈δ2N〉 [12].

The random matrix theory (RMT) predicts the scaling of this measure as log n̄ (or log E)
for the domain of fully developed chaos, meanwhile for the completely uncorrelated sequences
of levels a linear scaling ∼n̄ is expected [10, 15].

For the Poisson ensemble of an uncorrelated sequence of levels one has �2(r) = r

and �̄3(n̄) = n̄/15. The number variance �2(n̄) was calculated for a set of ensembles
within RMT supposed to model the behaviour of Anderson-type systems [15, 16]. Its
asymptotic form was shown to be similar to the uncorrelated case but with the coefficient (level
compressibility) χ < 1, �2(n̄) ∼ χn̄ for large n̄. The value χ > 0 at weakened level repulsion
(compared to the metallic limit) refers to the fractal nature of wavefunctions. Restricting to
the nearest-neighbour interactions of the logarithmic pair potential in the Coulomb plasma
model Bogomolny et al [10] found the value of the compressibility χ = 1/2 which should
hold for the models with the semi-Poisson statistics.

In section 3, we discuss a completing semiclassical concept of the degree of chaoticity,
i.e., of the phase space fraction occupied by the chaotic trajectories µ for different segments
of the spectra and interaction parameters. A broad region of µ from increasing to maximum
values in the low and middle parts of the spectra to the decreasing again values in the upper
parts of the spectra occurs, strongly depending on the parameters and location of the spectral
segment. These results confirm the nonuniversality and varying nonintegrability properties as
obtained in section 2.

In section 4, an independent quantitative statistical analysis of quantum chaotic patterns
of long-range type is provided by the fractal properties of the eigenfunctions: the set of fractal
dimensions Dq is defined by the scaling properties of the inverse participation ratios Iq(n)

related to the eigensolution of the state n of a Hamiltonian as Iq(n) = ∑
r |�n(r)|2q . For the

sake of application to the excited states of our electron–vibron model (defined in section 2) it
is suitable to use the spectral representation where the relevant substrate is the space spanned
by the vibron (phonon) Fock states n [17]:

Iq(n) ≡
∑

i

|Cin|2q . (2)

Here, Cin ≡ 〈�i |χn〉;χn(Q1,Q2) are the exact (numerically calculated for the present model)
vibron wavefunctions in the space of coordinates Q1 and Q2; the base set �i is chosen as
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the set of vibron Fock states—excited states i of the unperturbed two-dimensional harmonic
oscillator, namely, i is a compound index denoting the direct product of the excited states s
and t of the vibrons 1 and 2: |i〉 ≡ |s〉1 ⊗ |t〉2 ∼ b

†s
1 b

†t
2 |0〉1 ⊗ |0〉2.

The scaling with the fractal dimension Dq in the spectral representation assumes that one
explores the probabilities Pi,L(n) = ∑

s∈i Ps(n) = ∑
s C2

s∈i,n, where the sum is taken over
the states inside the cube i of dimension 2 comprising l2 base Fock states and L denotes the
number of these cubes (L ∼ 1/l2). Then,

Iq,L(n) ∝
L∑
i

P
q

i,L(n) ∝ L−Dq(q−1), (3)

where the information dimension D1 is understood as usual in the limit q → 1 as the scaling
factor of exp

(−∑
Pi log Pi

) ∝ LD1 . A common assertion found by Kravtsov and Muttalib
[18] states that the critical statistics in certain class of systems including the Anderson model at
M–I transition is in an intimate relation with the weakly overlapping (implying multifractality)
wavefunctions.

2. ∆̄3 statistics as a measure of spectral rigidity of the E ⊗ (b1 + b2) Jahn–Teller model

The E ⊗ (b1 + b2) JT model is defined by the Hamiltonian

Ĥ = �
(
b
†
1b1 + b

†
2b2 + 1

)
I + α

(
b
†
1 + b1

)
σz − β

(
b
†
2 + b2

)
σx (4)

described, e.g., in our previous papers [1, 17, 19]. In short, the local spinless double
degenerate electron level is linearly coupled to two intramolecular vibron (phonon) modes
of the frequency � by different coupling constants α 	= β. The pseudospin notation
with 2 × 2 Pauli matrices σx, σz and unit matrix I refers to the two-level electron system.
The operators bi, b

†
i satisfy boson commutation rules

[
bi, b

†
j

] = δij and define the vibron

coordinates Qi = 〈
b
†
i + bi

〉
, i = 1, 2. The interaction term ∝α removes the degeneracy of the

electron levels and the term ∝β mediates the vibron-assisted electron tunnelling between the
levels (the class of exciton models differs from the present one by the absence of the vibron-2
assistance in the tunnelling term ∼β). Two cases of special symmetry comprise the rotation
symmetric E ⊗ e JT model (α = β) and the polaron model with β = 0 or α = 0. Introducing
nonequal coupling constants the model above generalizes the common E ⊗ e Jahn–Teller
model. The interest for such a generalization has various sources, in particular: (a) different
coupling constants are likely to be caused by a spatial anisotropy in a crystal plane; (b) two
vibron modes need not have necessary the same frequencies. In this case, the Hamiltonian can
be appropriately rescaled to the present model with equal frequencies but different coupling
strengths (in what follows we set � = 1); and, last but not least, (c) the generalized JT system
with broken rotational symmetry presents more rich variety of generic chaotic properties than
its simpler prototype. As it was shown [1, 17] it stands closer to the generic models of quantum
chaotic behaviour.

In the following, we use the vibron eigenfunctions of the transformed Hamiltonian
H̃ ≡ UĤU−1 [17, 19]

H̃ = �

(∑
i=1,2

b
†
i bi + 1

)
+ α

(
b
†
1 + b1

) − pβ
(
b
†
2 + b2

)
Rph (5)

exactly diagonalized in the electron subspace by the Fulton–Gouterman (FG) unitary operator
U = 1√

2

(1, Rph
1, −Rph

)
, where Rph = exp

(
iπb

†
1b1

)
is the vibron reflection operator imposing

high nonlinearity in the system and the parity p = ±1. It is easy to see that in the FG
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Figure 1. Example of the wavefunction χn(Q1, Q2) for α = 3, β = 2 and n = 200.

representation the parities p = ±1 are exactly mirror images of each other and can be mapped
one onto another by a mere change of the sign in the definition of the phonon-2 displacements
(Q̂2 → −Q̂2), thus the system remains doubly degenerated and the parity does not have any
impact on the properties of the spectrum; in what follows we choose p = +1.

In the representation of radial coordinates in the plane Q1 × Q2,Q1 = r cos φ,Q2 =
r sin φ, the transformed Hamiltonian (5) yields [17]

H̃ = − 1

2r

∂

∂r

(
r

∂

∂r

)
+

1

2
r2 − 1

2r2
· ∂2

∂φ2

+
√

2αr(cos φ − sin φRph)I + p
√

2(α − β)r sin φRph. (6)

The reflection operator Rph in radial coordinates acts as Rph(r, φ)f (r, φ) = f (r, π − φ) on
some f (r, φ). An example of the numerical eigenfunction to the transformed Hamiltonian
(5) in the space Q1 × Q2 is shown in figure 1. Let us note the apparent fractal nature of the
space distribution of the state amplitude4. The Hamiltonian (6) commutes with the operator
of the angular momentum Ĵ = i

(
b1b

†
2 − b

†
1b2

) − σy/2 if α = β. Thus, the eigenfunctions of
the symmetric model can be chosen each to pertain to a state with a good quantum number
|j | = 1/2, 3/2, . . . [17].

The last term in (6) breaks the rotational symmetry and involves interactions of the basis
states with different j . Hence, a wavefunction of the full Hamiltonian is now distributed over
a range of values of the angular momentum (figure 2). An analogy to the two-dimensional
Anderson model of disorder can be traced if the base functions with definite j are considered as
‘pseudosites’ over which the wavefunction is spread. Similarly as in the Anderson model, the
properties of the model are determined by the relative strengths of the intersite (different j ) and
the onsite interactions. The microscopic reason for this analogy is the assistance of phonons-2

4 It is to be noted that the energy spectrum of the system is invariant with respect to the interchange α ↔ β. But the
system itself is not invariant with respect to this interchange. For example, the ground state is essentially different
in the domains of heavy (α > β) and light (α < β) polarons [19]. However, in the Fock state representation the
components of the corresponding wave vectors differ up to the sign change which does not affect the fractal properties
of wavefunctions in the spectral representation and, hence, the symmetry of exposed results with respect to the said
transformation.
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50

Figure 2. Examples of distributions of wavefunctions over j -space for α = 2, β = 3. Evidently,
the states exhibit different extent of localization.

in transitions between the levels (6) which allows for the emerging of the pseudolattice. In
our opinion, it is just these transitions with changing symmetry (Rph) which ensured the
similarity of the results for NNS distribution [1] to the Anderson model close to the M–I
transition (marginal in two dimensions). Traces of quantum chaos cause the sequence of these
coefficients to be distributed in a random fashion with varying n thus supporting the analogy
to the Anderson model with a priori given random coefficients.

Calculating the angular part of the matrix elements of the symmetry breaking term in (6)
between the states of the harmonic oscillator the selection rules can be obtained which assert
that the element with definite j is directly connected to the elements with j ′ = j + 2, j − 2
(cf especially figure 2 with n = 312 where only every odd ‘pseudosite’ j is populated). This
reminds us of an analogy with the ‘daisy models’ of random matrix ensembles [20] with
dropping every second level which was shown to lead directly to the semi-Poisson distribution
of NNS. The natural ‘length’ of our pseudolattice (for a given interval of energy) is thus the
maximal number of allowed values of angular momentum for a given n (level number), that
is L ∼ √

n (a state with main quantum number nr = 0, 1, . . . of a two-dimensional harmonic
oscillator is nr + 1 times degenerated with an auxiliary quantum number ranging between 0
and nr , hence n ∼ n2

r ). Thus, the analogy to the Anderson-type models with M–I transition
whose intrinsic characteristics is the length L of a system appears now more pronounced.

In order to calculate the long-range averaged characteristics of the energy spectra of (5) we
numerically diagonalized the Hamiltonian matrix in the representation of the base Fock states
of the vibrons 1 and 2. Taking N1 and N2 base Fock states for each vibron we introduced an
appropriate ordering of sites [21] so that a state vector turned to be a vector with N1 · N2

elements. Numerical determination of high energy states produces an inevitable error
because of truncating the base space. Varying the numbers of the base states we investigated
the convergence of the results. For practical purposes we limited ourselves by the base size
N1 × N2 = 75 × 75 from whence about 1100–1200 states appeared to be trusty (giving the
convergence up to 0.1×(characteristic level spacing)). This number of energy levels was
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used in the following calculations. Thus, the obtained spectrum needs to be unfolded in
order to ensure its homogeneity (that is normalized so that the local averaged level spacing is
unity). To do so it is necessary to fit the ‘staircase’ N(E) (or the corresponding level density
ρ(E) = ∑

i δ(E − Ei)) by a reasonably chosen smooth function. Different choices of the
latter are possible. The calculations below used the unfolding by fitting the level density by
a third-order spline polynomial (after smoothing the data via Gaussian smoothing with the
smoothing constant 0.3) in the domain of interest, that is for level numbers 100–1200. In this
interval the level density of our two-vibron system grows almost linearly with the energy (we
note in passing that this behaviour is in a qualitative accordance with the semiclassical Weyl
formula giving generically a linear growth of the level density for a two-vibron system), so
that such fitting turns to be more than satisfactory. We performed sample calculations with
an increasing order of polynomials, and using other algorithms of producing the smoothed
level density ρsm as well (in particular, varying the parameters of the Gaussian smoothing
and using the smoothing via moving average/median); the results appeared indistinguishable
within statistical errors.

In order to compile a statistical ensemble out of the (deterministic) quantum problem
one has to perform averaging of the numerical quantities of interest over different parts of
the spectrum taken as members of this ensemble. We included into the statistical analysis
the energy intervals centred at different starting values ranging between 100 and 1100 levels
which corresponded to the energy values between (−10) and (−5) and between 25 and 30
depending on the values of (α, β). However, as it follows from the results below, the ensemble
averaged properties can show a bias (sensitivity to the starting point in the energy range),
therefore this procedure must be followed with maximal care. To improve the statistics we
also followed the standard procedure of collecting statistical data from small intervals in the
space of parameters (α, β). To be exact, for a given point of interest (α0, β0) we collected
the energy values from the square (α0, β0) ± 0.25 in the parameter space with the step 0.1.
(The exception of this rule was collecting the data for the points where α0 = β0. There, this
restriction was followed for choosing the neighbouring parameters for the sampling.) From
figure 4 it follows that indeed the averaged statistical data present a slight bias when taking
different energy intervals. Therefore, we presented the results in figure 4 separately in two
energy bins for lower (100–600) and higher (600–1100) levels. It is worth noting that the
nonsymmetric parameter values (α 	= β) appear to present more robust statistics with respect
to the energy interval than the symmetric ones (α = β). The same conclusion was already
drawn from the investigation of the short-range statistics [1, 17] where we showed that the
spectral properties of the nonsymmetric JT models were more homogeneous with respect to
the choice of the energy interval. Taking smaller energy bins than those of figure 4 however
did not change much the appearance of the corresponding figures.

In figure 3, the samples of the long-range spectral correlations �̄3 of the U-transformed
Hamiltonian (5) (unfolded in a fashion described above) are presented for several sets of
interaction parameters. It is seen that the spectral rigidity shows up serious deviations from
the Poisson behaviour as well as from the logarithmic dependence expected in the frame of
RMT. For large n̄ it supposedly tends to a saturation, and a characteristic linear domain is
evident for small n̄ (up to n̄ ∼ 15).

In figures 4 and 5, we plot the level compressibilities (slopes d�̄3(n̄)/dn̄|n̄=0 of the �̄3

curves) for a range of parameters α, β. The slopes in figures 4(a) and (b) were calculated from
averaging over 500 levels in the ranges 100–600 and 600–1100, respectively. Taking lower
levels would bring us below the ‘diabatic line’ where the system fills only one potential well
of the ‘effective potential’ (see [17, 19] for a detailed discussion). It is seen from figure 4 that
results for different intervals of energy show differences, but, nevertheless, similar tendencies.

7
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Figure 3. Spectral rigidities (�̄3-statistics) in different segments of the spectra for the E⊗(b1 +b2)

JT model. The slopes are linear for n̄ at least up to 15 and tend to nonuniversal saturation values
�̄3max(β) for large n̄.

Apart from the cases close to the special symmetries (α = β and α  β, α � β) the slopes
show a markable accumulation close to the value χ = 0.5/15 (the horizontal grid line at 0.033)
indicating the semi-Poisson limit. This limit is more pronounced at higher levels (interval
600–1100), where even the points corresponding to the symmetric cases α = β are close to
this line. For lower energy intervals (levels 100–600) this universality is seen less, although all
�̄3 curves points are far from both Poisson and RMT limits. For lower energies there is also
a more pronounced difference between symmetric and nonsymmetric models: meanwhile the
nonsymmetric values of parameters still tend to the semi-Poisson limit, the symmetric points
however show essential deviation from this limit towards the Poisson case.

In figure 3, the �̄3(n̄)/dn̄|n̄ curves for β = 2, 4 for α = 3 (scaled by � = 1) averaged
over the whole relevant extent of the spectra (up to the level n = 1100) are situated very close
one to another, i.e. they are getting close to a limit with the minimal slope.

The said marginality also emerged in the statistics of NNS [1]. We have shown that the
dispersions σ 2 of NNS distributions in the range of parameters far from the mentioned special
symmetry cases tend to a limit σ 2 � 0.5 characteristic for the M–I transition of the Anderson
model.

8



J. Phys. A: Math. Theor. 41 (2008) 155102 E Majernı́ková and S Shpyrko

β

β

Figure 4. Slopes d�̄3(n̄)/dn̄|n̄=0 (‘level compressibilities’) of the long-range statistical measure
for different model parameters (α, β) for different parts of the spectra. The grid lines indicate the
Poisson line (1/15) and the marginal semi-Poisson limit (χ = 0.5/15 � 0.033). The dispersion of
the probability distributions pertaining to the displayed mean values is ∼0.01. The pictures show
a strong dependence on the position of the fragment within the spectra.

3. Quasiclassical description in the phase space

It is interesting to discuss the mapping between the exposed results and the semiclassical
description of the same system. The search for the quantum chaotic patterns historically meant
looking for quantum correspondence to the chaotic behaviour of the classical trajectories. First
of all it is to be noted that the passage to the (semi)classical description in a two- or many-
level electron–phonon system can be performed in several fashions. The most straightforward
‘semiclassical’ description of the quantum JT problem is obtained if we pass to the real Bloch
variables made of pseudospin Pauli matrices:

x(t) := 〈σx〉t y(t) := 〈σy〉t z(t) := 〈σz〉t , (7)

and perform the appropriate decoupling of the oscillatory (phonon) and electron variables in
the initial Hamiltonian (4) within the framework of the Born–Oppenheimer approximation:

9
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Figure 5. The cumulative slopes d�̄3(n̄)/dn̄|n̄=0 averaged over the relevant extent of the spectra.
Large deviation of the points α = 4, β > 4 from the suggested marginal line is explained by their
relative proximity to the symmetric point α = β = 4.

〈Q̂1σ̂x〉 → 〈Q̂1〉(t)x(t), etc. Another way of passing to the semiclassical description follows
from the form of the Hamiltonian (5) where the electron degrees of freedom are exactly
eliminated at the cost of the strongly nonlinear coupling of the phonon degrees of freedom.
The semiclassical decoupling then means the decoupling of the vibrons 1 and 2. The classical
equations of motions in this variant are implied by the following classical Hamiltonian as a
function of the coordinates γi and respective momenta πi :

H(γ1, π1, γ2, π2) = 1
2

[
π2

1 + π2
2 + γ 2

1 + γ 2
2

]
+ αγ1 ∓ βγ2 exp

(−2
(
γ 2

1 + π2
1

))
. (8)

The trivial linear stability analysis shows that the stationary point (γ1, γ2, π1 = π2 = 0)

is unstable unless α � β, α  β or unless the parameters (α, β) are located in the small
domain near the point α = β = 0. The crucial characteristics of interest is however the
chaoticity of the phase space, in particular, its fraction µ occupied by the chaotic trajectories.
The formulae which relate this quantity to the parameters of the statistics of quantum levels for
both short- and long-range statistics are widely known [3–5]. We investigated the chaoticity
of the trajectories implied by the Hamiltonian (8) and performed rough estimations of the
‘chaoticity parameter’ µ for different energies. We studied the sensitivity of the classical
equations of motion to the initial conditions checking whether two initially neighbouring
trajectories diverge in the course of time (that is studying the Lyapunov index [4, 5, 22]). The
fraction of the chaotic trajectories at given energy E was then estimated by taking at random
the initial points respecting H(γ1, π1, γ2, π2) = E. The detailed quantitative presentation of
this work is to be given elsewhere; for the sake of the present contribution we just mention the
results briefly. The classical phase space in the energy range corresponding to the energies of
quantum levels used (that is up to E ∼ 30) appears to be pronouncedly chaotic. The fraction
of chaotic levels increases rapidly with the increase of energy and reaches its maximum
µ ∼ 0.90–0.99 for the energies typically E ∼ 10 which roughly corresponds to the lower
energy bin of figure 4 (levels 100–600). With further increasing energy the value of µ then
slowly decreases. Its estimations for E between 20 and 30 range from 0.3 to 0.75 strongly
depending on the parameters α and β. This latter energy interval approximately corresponds
to the higher energy bin of figure 4(b). We note once again the more pronounced universality
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Figure 6. Examples of scaling of the inverse participation ratio I2l (n) as a function of the box size
l in the box-counting algorithm as the illustration of the reliability of the scaling (3) for our model.
Different shapes of symbols correspond to the values for different levels n: diamonds for n = 153,
stars for n = 157 and squares for n = 161. The domain of linear slopes (proportional to the fractal
dimensions D2) extends up to the box sizes ∼8 × 8 (at larger box sizes the linearity is violated due
to the size effects). Slight level-to-level fluctuations of the slopes are also seen. Similar scaling
can be demonstrated for q = 3, 4 as well.

of the quantum characteristics at the upper bin (figure 4(b)) which appears to correspond to
the moderate values of the degree of the classical chaoticity. The quantitative conclusions for
this item is however a challenge for a separate study.

In any case, the above results confirm the nonuniversal degree of the classical
nonintegrability demonstrated by the dependence of the chaoticity parameter µ on the model
parameters α and β and on the location of the energy segment in the spectra. Moreover,
the linear dependence of the spectral rigidities in certain parts of the spectra implies a strong
suppression of the level repulsions because of the presence of regions with various degree
of chaoticity and related chaos-assisted tunnelling between the regions of small degrees of
chaoticity. Analogous nonuniversal behaviour of the level compressibilities presented in
figure 4 indicates a cumulation of most of their values in the chaotic region (0, 0.033) close
to the semi-Poisson values 0.5/15 depending on the spectral segment where the chaoticity
parameter is correspondingly reduced.

4. Fractal dimensions and multifractality of the JT-excited wavefunctions

An independent quantitative analysis of the properties of the E ⊗ (b1 + b2) excited spectra can
be obtained by exploring the scaling of the inverse participation ratio (2) and (3) in the spectral
representation of Fock states and following calculation of related fractal dimensions. In
figure 6, we give the samples of the scaling of log I2,L(n) (from equation (3)) for several
successive states as functions of the box size l (L ∼ 1/l2) comprising l2 Fock states. The
linear slope in the log–log coordinates stretches up to the box sizes 8×8 which indicates the
existence of a well-determined quantity D2 for each level, although the generalized fractal
dimensions show slight level-to-level fluctuations.
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Figure 7. Fractal dimensions D̄q averaged over n for different pairs of α = 3, β. A weak
multifractality is evident when comparing D̄q for different q.

Figure 8. Fluctuations of fractal dimensions D2 over levels n for different pairs α, β.

In figure 7, the averaged fractal dimensions D̄q, q = 1, 2, 3, 4, in the spectral
representation are displayed for a set of interaction strengths. Small variations of D̄q (D̄i < D̄j
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Figure 9. Fractal dimensions D̄2 averaged over n in the range 200–400 for different pairs α, β. In
the ‘most chaotic’ domain the values of D̄2 are distributed in a narrow region ∼1.5 ± 0.1.

at i > j ) testify a weak multifractality of the respective wavefunctions. The fractal dimensions
Dq show strong fluctuations with changing n (figure 8) so that one has to speak rather about
their statistical distributions [23]. It is seen that this distribution may have a pronounced drift—
there occurs a crossover between dimensions d = 1 and d = 2 at low n. It becomes more
homogeneous when n increases. In view of the interpretation in terms of the 1D ‘pseudolattice’
in j -space with natural size of the order ∼√

n this can be understood as a tendency towards
a universal distribution in the limit of a very large lattice size. Such a limiting behaviour of
statistical characteristics of the distribution of fractal dimensions for large lattice sizes of the
Anderson model at M–I transition was conjectured by Parshin et al [23].

Despite the level-to-level fluctuations of the fractal dimensions (figure 8) their values
averaged over level numbers appear to exhibit marginal universality in a similar sense as
the universality marked in figure 4. The averaged fractal dimensions D̄2 in figure 9 show a
markable tendency to values 1.5 ± 0.1 apart from the case α � β or α  β.

5. Conclusion remarks

The statistical properties of the investigated JT model are closely related to its spatial symmetry
given by the interaction strengths α, β. Our numerical analysis of the spectral rigidity, its slopes
and fractal dimensions bring the evidence for their apparent nonuniversality and spectral
inhomogeneity. Namely, our results allow us to conclude that the nonuniversality is related
by the dimensional crossover between d = 1 and d = 2 when changing the parameters α, β.
A support for this suggestion is the behaviour of the fractal dimension D̄2 (figure 9) which
approach very close to the value 1.5 at the points α = β. In the neighbourhood of this point
the nonuniversality of D̄2 is the most moderate; the deviations from 1.5 extend within the
interval ±0.1.

We have shown that although the long-range correlation measure �̄3(n̄) and the partial
compressibilities (averaged over partial segments of the spectra) are nonuniversal and highly
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inhomogeneous, the slopes averaged over the whole relevant spectra approach marginally
(quantitatively close) to the universal value characteristic for the semi-Poisson distribution,
0.5/15 ∼ 0.033. This behaviour is analogous to the well-defined marginal behaviour of
the average fractal dimensions D̄2 of the respective wavefunctions mentioned above. To our
knowledge, till now the theory justifying the existence of the limiting ‘universal’ value related
to the said distribution is lacking. The only relation χ = (d − D2)/2d derived by Kravtsov
and Lerner [15] was the first bridge between the fractal dimension D2 and the long-range level
statistics. However, it is proven to be valid only for small values of compressibility and does
not fit to our calculations.

We have also revealed the corresponding nonuniversal and inhomogeneous behaviour of
the chaoticity parameter—the fraction of the chaotic phase space of the classical trajectories.
The detailed analysis of this parameter in the whole phase space would be very useful for
further considerations of phenomena especially related to the mixing [7] of the phase space
between the regions of different degrees of chaoticity. The presence of the mixing phenomena
is supported by the multifractal behaviour of the wavefunctions. Because of the nonexistence
of the extended states in our model we can conclude on the concept of the chaos-assisted
tunnelling between the domains with reduced stochasticity through those with a high degree
of stochasticity.

Besides the Anderson model close to the metal–insulator transition [8] other models
sharing the universal semi-Poisson statistics are known—in particular, the Bogomolny [10]
plasma model with screened Coulomb interactions and the ‘daisy models’ [20].
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[16] Chalker J T, Kravtsov V E and Lerner I V 1996 Pis’ma v ZhETF 64 355
Chalker J T, Kravtsov V E and Lerner I V 1996 JETP Lett. 64 386
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